

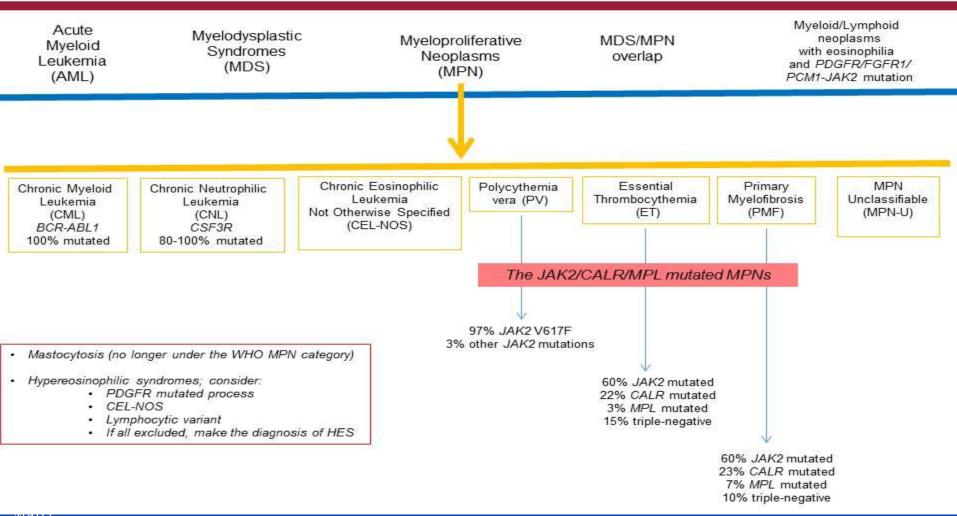
Biology of High risk Myeloproliferative Neoplasms

Naseema Gangat MD

Assistant Professor of Medicine Mayo Clinic College of Medicine Rochester, MN

Disclosures

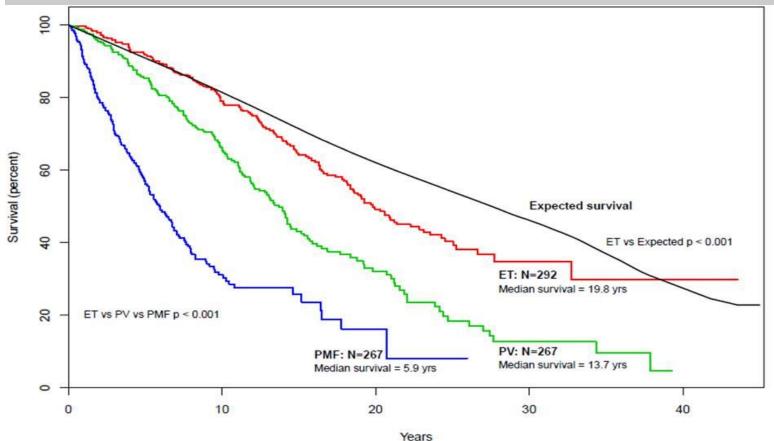
Principal investigator role	Janssen, Gilead Sciences, Takeda, Celgene
Employee	None
Consultant	None
Major Stockholder	None
Speakers' Bureau	None
Scientific Advisory Board	None



Objectives

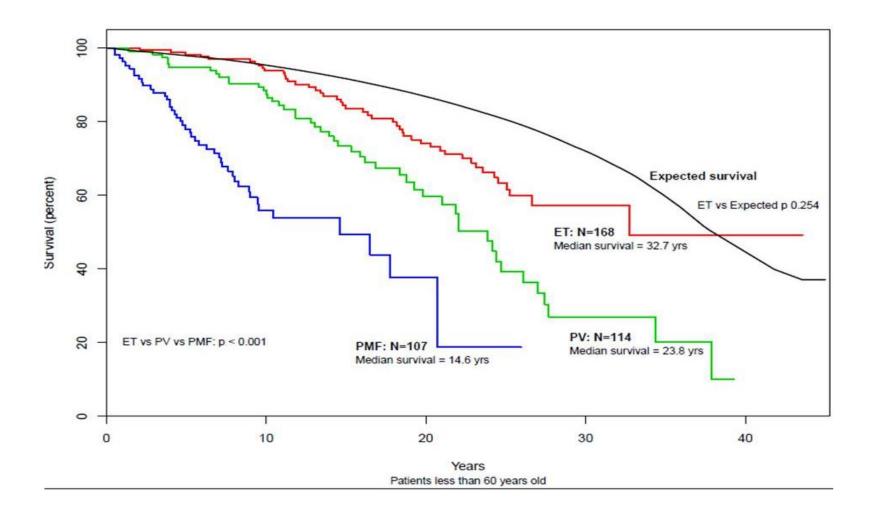
- WHO 2016 classification of MPN
- Impact of mutations in MPN
- Genetic prognostication in MPN

WHO Classification of MPN



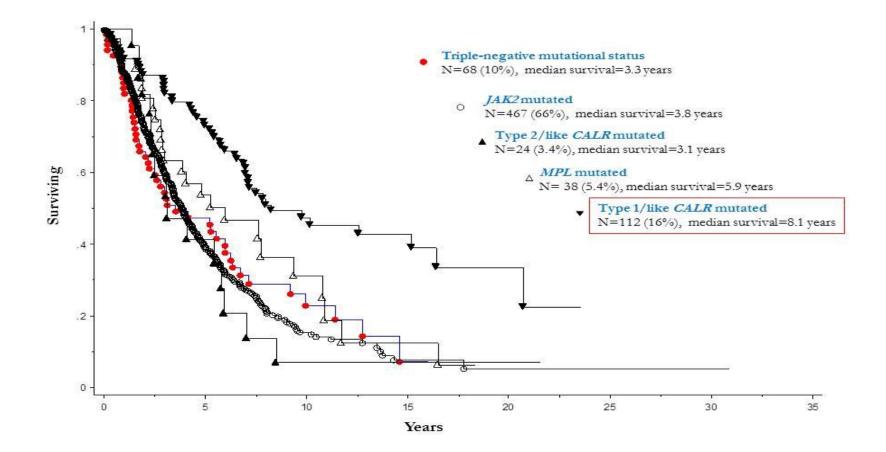
Blood 2016

Survival in MPN

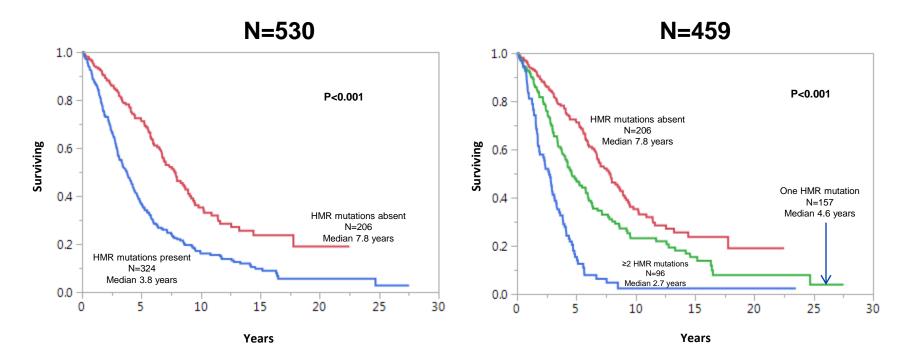

Comparison of survival in 826 Mayo Clinic patients with essential thrombocythemia vs polycythemia vera vs primary myelofibrosis.

MAYO CLINIC

Blood 2014


Survival in young patients with MPN

Blood 2014


Survival of 709 primary myelofibrosis patients stratified by driver mutational status

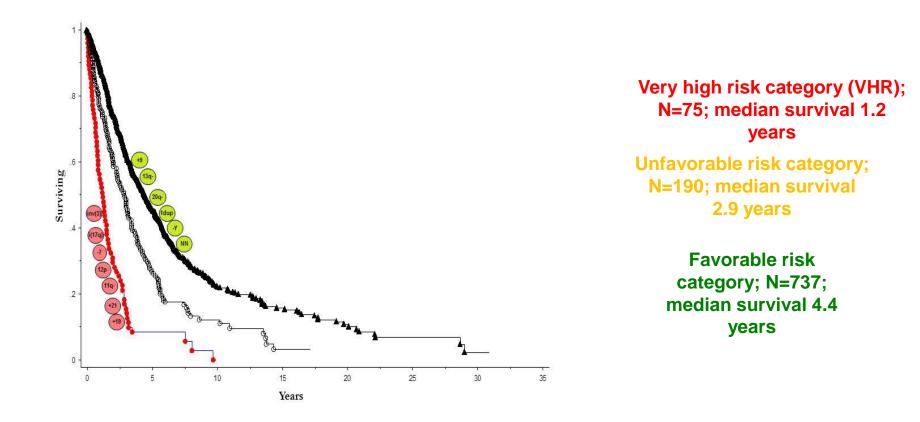
Am J Hematol 2018

Survival of 530 patients with primary myelofibrosis stratified by the presence or absence of high molecular risk (HMR) mutations ASXL1, SRSF2, U2AF1Q157, EZH2, IDH1 and IDH2

Contemporary prognostic models in PMF

Prognostic score	Variables	Assessment
IPSS (Blood 2009)	Age Anemia Leukocytosis Circulating blast % Constitutional symptoms	At diagnosis
DIPSS (Blood 2010)	Same as above	Anytime
DIPSS plus (JCO 2011)	Same as above + Red cell transfusion need Thrombocytopenia Unfavorable karyotype	Anytime
MIPSS70/MIPSS70 plus (Mutation/karyotype enhanced) MIPSS70 plus version 2.0 (JCO 2017, JCO 2018)	Clinical + histologic+ genetic variables	Anytime
GIPSS (Genetically inspired) (Leukemia 2018)	Cyto-molecular genetics	Anytime

Revised Three-tiered Cytogenetic stratification in PMF


Unfavorab	le karyotype	Three tiered c	ytogenetic risk groups
DIPSS plus		Very high risk (VHR)	 single/multiple abnormalities of -7, inv(3)/3q21, i(17q), 12p- /12p11.2 or 11q-/11q23 Single/multiple autosomal trisomies other than +9 and +8
MIPSS70 plus	inv(3) or 11q23rearrangement any abnormal karyotype except normal karyotype sole abnormalities 20q-, 13q-, +9, chr. 1 translocation/ duplication, -Y, sex chromosome abnormality other than -Y	Unfavorable	 sole abnormalities of +8 or 7q- sole translocations not involving chromosome 1 sole abnormalities not otherwise classified monosomal karyotype without VHR abnormality complex non-monosomal without VHR abnormality Single/multiple 5q- abnormalities Two abnormalities without VHR abnormality
MAYO CLINIC		Favorable	 Normal karyotype sole abnormalities of 20q-,13q-, +9 sole sex chromosome abnormalities including -Y sole chromosome 1 translocations/duplications

ŢÞ

Leukemia 2018

2012 MFMER | slide

Survival of 1,002 patients with primary myelofibrosis stratified by the revised three-tiered cytogenetic risk model

Leukemia 2018

MIPSS70 plus Version 2.0

Clinical variables

Sex and severity adjusted anemia
severe anemia
8g/dl (F)
9 g/dl (M)
moderate anemia
8-9.9 g/dl (F)
9-10.9 g/dl (M)

- Blasts ≥ 2%
- Constitutional symptoms

Genetic variables

U2AF1 Q157, ASXL1, SRSF2, EZH2, IDH1/2, absence of type 1 CALR

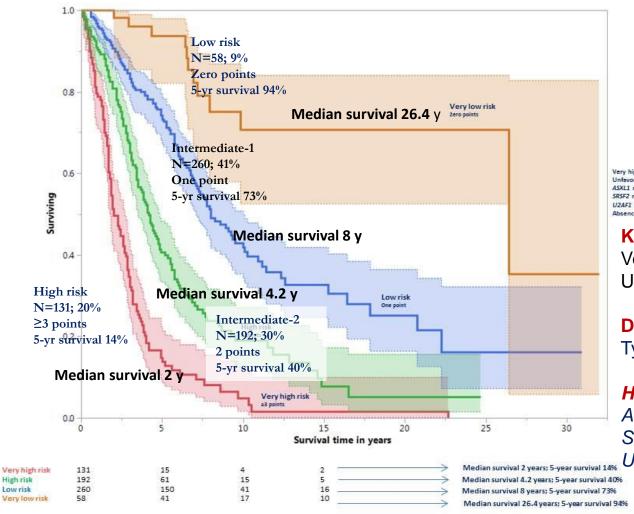
≥2 HMR

- 3 tiered cytogenetics (VHR, unfavorable) Very high risk karyotype 4 points Unfavorable karyotype 3 points ≥2 HMR mutations 3 points

One HMR mutation 2 points Type 1/like CALR mutation absent 2 points Constitutional symptoms 2 points Severe anemia 2 points

Moderate anemia 1 point ≥2% circulating blasts 1 point

http://www.mipss70score.it/


MIPSS70 plus Version 2.0

Risk categories: very high risk ≥9 points; high risk 5-8 points; intermediate risk 3-4 points; low risk 1-2 points; and very low risk zero points Patients < 70 years All patients N=311 N=406 1.0 Overall Survival (probability) Overall Survival (probability) 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 15 20 25 0 5 10 30 5 10 15 20 25 30 0 Years Years Very high risk; n = 44; median, 1.8 years; 10-year survival, < 5% Very high risk; n = 69; median, 1.8 years; 10-year survival, < 3% High risk; n = 124; median, 4.1 years; 10-year survival, 13% High risk; n = 172; median, 3.5 years; 10-year survival, 10% Intermediate risk; n = 64; median, 7.7 years; 10-year survival, 37% Intermediate risk; n = 76; median, 7 years; 10-year survival, 30% Low risk; n = 64; median, 16.4 years; 10-year survival, 56% Low risk; n = 70; median, 10.3 years; 10-year survival, 50% Very low risk; n = 18; median, not reached; 10-year survival, 92% Very low risk; n = 19; median, not reached; 10-year survival, 86%

elinic

JCO 2018

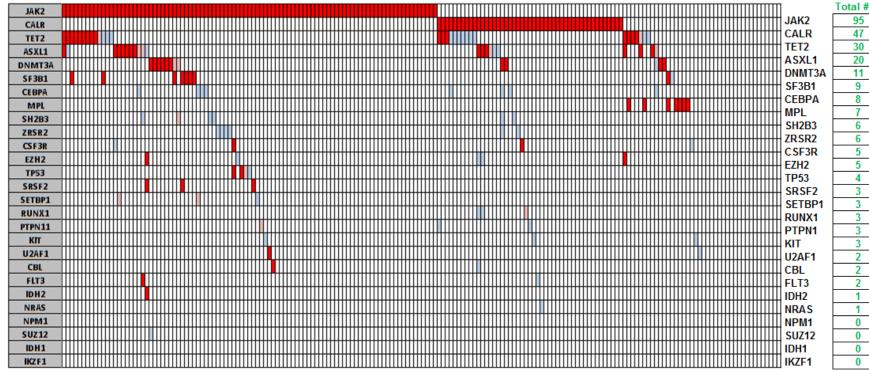
Genetically inspired prognostic score (GIPSS)

MAYO

CLINIC

Very high risk karyotype = 2 points Unfevorable karyotype = 1 point ASKLT mutation = 1 point SRSF2 mutation = 1 point UZAF1 Q157 mutation = 1 point Absence of type 1/like CALR = 1 point

Karyotype:


Very high risk = 2 points Unfavorable = 1 point

Driver mutations: Type 1/like *CALR* absent = 1 point

High risk mutations: ASXL1 mutation = 1 point SRSF2 mutation = 1 point U2AF1 Q157 mutation = 1 point

Leukemia 2018

Targeted deep sequencing in 183 patients with ET

RED: Sequence variants previously associated with a hematologic malignancy and shown to be somatic

PINK: Sequence variants previously associated with a hematologic malignancy and with <1% minor allele frequency in current databases for single nucleotide polymorphisms

BLUE: Sequence variants with ≤1% minor allele frequency in current databases for single nucleotide polymorphisms

- Prevalence of mutations/variants other than JAK2/CALR/MPL = 53% 1.
- 2. Driver mutational status did not affect prevalence
- 3. Most frequent were ASXL1 and TET2
- 41%, 8% and 4% harbored 1, 2 or \geq 3 such mutations 4.

% Total

52%

26%

16%

11%

6%

5%

4%

4%

3%

3%

3%

3%

2%

2%

2%

2%

2%

2%

1%

1%

1%

1%

1%

0%

0%

0%

0%

95

47

30

20

11

9

8

7

6

6

5

5

4

3

3

3

3

3

2

2

2

1

0

0

0

0

Targeted deep sequencing in 133 patients with PV

			lotal	
JAK2			JAK2 13	
TET2			TET2 29	22%
ASXL1			ASXL1 10	5 12%
SH2B3			SH2B3 12	2 9%
CEBPA			CEBPA 8	6%
ZRSR2			ZRSR2 6	5%
SF3B1			SF3B1 4	3%
CSF3R			CSF3R 4	3%
КГТ			KIT 4	3%
SRSF2			SRSF2 4	3%
IDH2			IDH2 3	2%
DNMT3A			DNMT3A 3	2%
SUZ12			SUZ12 2	2%
SETBP1			SETBP1 2	2%
RUNX1			RUNX1 2	2%
CBL			CBL 1	1%
TP53			TP53 1	1%
FLT3			FLT3 1	1%
CALR			CALR 0	0%
MPL			MPL 0	0%
EZH2			EZH2 0	0%
NRAS			NRAS 0	0%
NPM1			NPM1 0	0%
IDH1			IDH1 0	0%
U2AF1			U2AF1 0	
PTPN11			PTPN1 0	
IKZF1			IKZF1 0	

RED: Sequence variants previously associated with a hematologic malignancy and shown to be somatic

PINK: Sequence variants previously associated with a hematologic malignancy and with <1% minor allele frequency in current databases for single nucleotide polymorphisms BLUE: Sequence variants with <1% minor allele frequency in current databases for single nucleotide polymorphisms

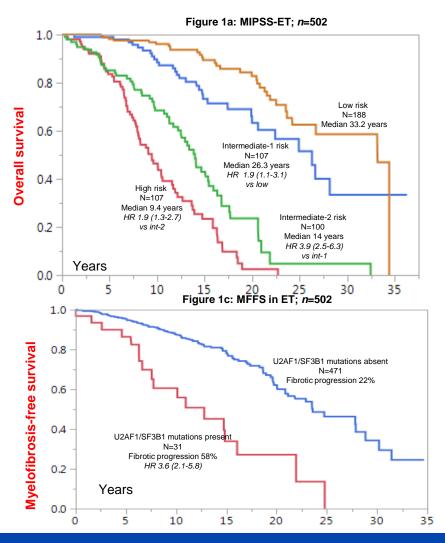
- 1. Prevalence of mutations/variants other than JAK2/CALR/MPL = 53%
- 2. Most frequent were *ASXL1* and *TET2*
- 3. 30%, 20% and 3% harbored 1, 2 or \geq 3 such mutations

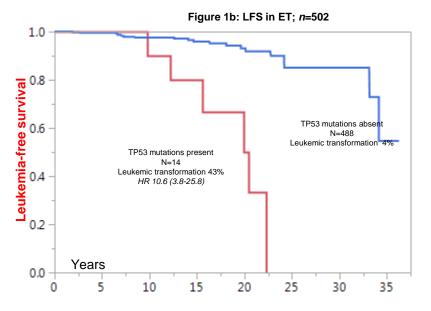
Blood Advances 2016

V Total

Contemporary prognostic models in PV/ET

Prognostic assessment	Variables	
Survival in PV	Age Leukocytosis Venous thrombosis	Leukemia 2013
IPSET- thrombosis	Age JAK2 mutation History of thrombosis Cardiovascular risk factors (diabetes, hypertension, tobacco use)	Blood 2012 Blood Cancer J 2015
IPSET- survival	Age Leukocytosis History of thrombosis	Blood 2012
MIPSS-ET/MIPSS-PV (Mutation-enhanced)	Clinical + genetic variables	Ongoing

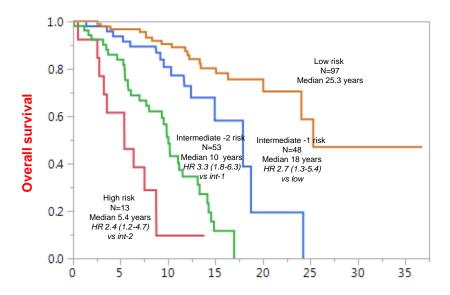



Derivation of Mutation-enhanced MIPSS score in ET/PV

Variables	HR (95% CI)	Weighted value		
ET				
Age > 60 years	6.7 (4.8-9.4)	4		
Male	1.8 (1.4-2.4)	1		
SRSF2/SF3B1 mutations	2.8 (1.8-4.3)	2		
PV				
Age > 60 years	5.7 (3.3-10.1)	2		
Leukocyte count ≥ 11x109	2.4 (1.5-3.9)	1		
Abnormal karyotype	2.1 (1.1-3.6)	1		
SRSF2 mutations	7 (2.3-17.4)	2		

Mutation-enhanced MIPSS score in ET (MIPSS-ET)

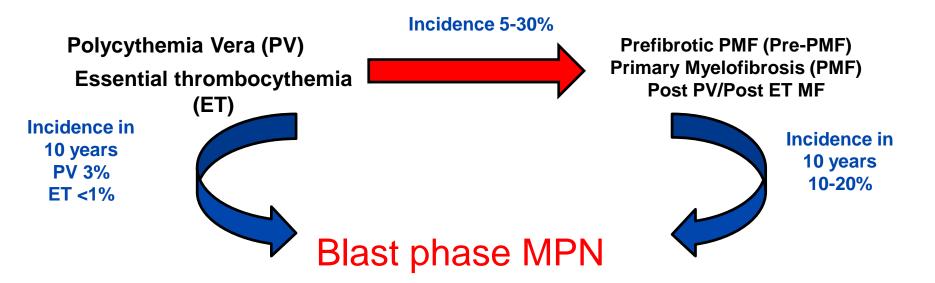
Analysis was based on a combined dataset of 502 cases, informative for all listed risk factors, from the Mayo Clinic and University of Florence.


ET survival risk factors: SRSF2/SF3B1 mutations (2 points), age >60 years (4 points) and male sex (1 point) – low "0" points; intermediate-1 "1-2 points"; intermediate-2 "3-4 points"; high "≥5" points

Ongoing

Mutation-enhanced MIPSS score in PV (MIPSS-PV)

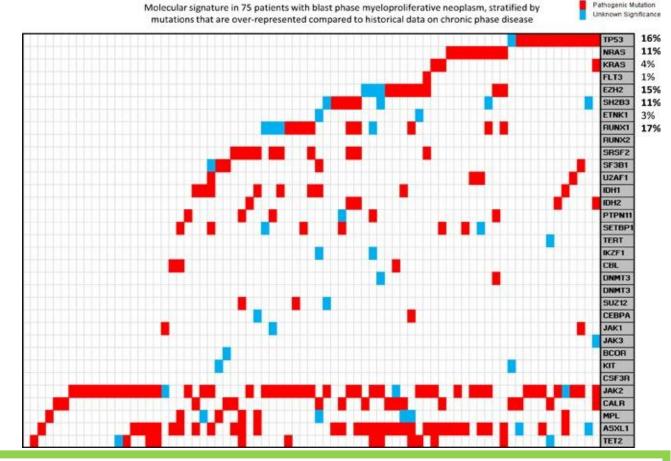
MIPSS-PV; n=211


Analysis was based on a combined dataset of 211 cases, informative for all listed risk factors, from the Mayo Clinic and University of Florence.

PV survival risk factors: SRSF2 mutations (2 points), age >60 years (2 points), leukocyte count \geq 11 x 10⁹/l (1 point) and abnormal karyotype (1 point) – low "0-1" points; intermediate-1 "2" points; intermediate-2 "3" points; high " \geq 4" points

Ongoing

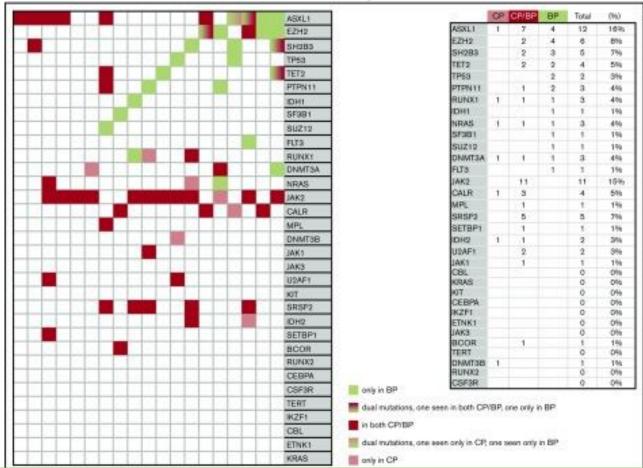
Blast Phase MPN: Incidence & Risk factors



PV: leukocytosis, age, abnormal karyotype, *SRSF2* or *IDH2* mutations and radiophosphorous, chlorambucil or pipobroman tx. ET: anemia, extreme thrombocytosis, age, leukocytosis, and *TP53* or *EZH2* mutations unfavorable karyotype, thrombocytopenia, excess circulating blasts, marked leukocytosis, transfusion-requiring anemia, age increased interleukin-8 and C-reactive protein triple-negative, ASXL1, SRSF2, IDH1/2, RUNX1, CEBPA or SH2B3 and absence of CALR type 1like mutation

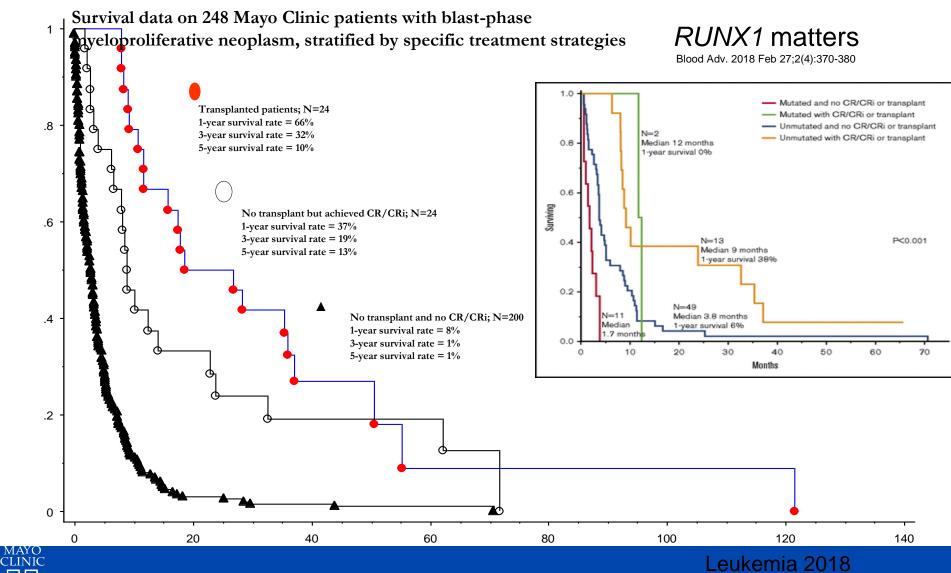
Leukemia 2018

Blast phase MPN: Molecular profile


1. Prevalence of *JAK2/CALR/MPL* mutations = 57%/20%/9%

- 2. 85% harbored other mutations/variants
- 3. Enriched in TP53, RUNX1, EZH2, NRAS, SH2B3 mutations

Blood Advances 2018


Blast phase vs chronic phase MPN: Molecular profile

Mutations with 2 or more instances of acquisition in blast phase disease included TP53, EZH2, LNK, ASXL1, PTPN11, and TET2

Blast Phase MPN

Summary

- During prognostication of patients with primary myelofibrosis (PMF), one can simply start with the genetics only GIPSS prognostic model
 - Very high risk (VHR) karyotype automatically puts a patient into high risk category and no additional prognostic information might be needed
 - In the absence of VHR karyotype, high risk category assignment requires three adverse genetic features: absence of type 1/like CALR, unfavorable karyotype, high molecular risk mutation such as ASXL1, SRSF2 and U2AF1 Q157
- About 10% of patients with PMF do not to display any adverse genetic features and their 5-year survival is over 90%

Summary

- MIPSS70+ version 2.0 includes clinical risk factors (anemia, circulating blasts, constitutional symptoms), in addition to genetic risk factors used in GIPSS, and offers additional information on prognosis
- MIPSS-ET and MIPSS-PV includes clinical risk factors (age/male gender, age/leukocytosis respectively), in addition to genetic risk factors
- Mutation patterns in blast phase MPN point to specific mutations (*TP53*, *EZH2*, *LNK*, *ASXL1*, *PTPN11*, and *TET2*) with potential pathogenetic relevance
- *RUNX1* mutations predict inferior survival in blast phase MPN

Acknowledgements

Mayo Clinic, Rochester, MN

Ayalew Tefferi Animesh Pardanani Curtis A Hanson Rhett Ketterling Terra Lasho Christy Finke CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy

Alessandro M. Vannucchi Paola Guglielmelli

Questions & Discussion

©2012 MFMER | slide